

Switchgrass

REFERENCE MATERIAL

Pedigree

Institution: Oklahoma State University

Location: Garvin County, OK

Cultivar: Alamo

Harvested: 2012

Received at INL: 2013

Sample Preparation: Ground to pass through a 1-inch

sieve using a Vermeer BG480 grinder

Composition

Table 1. Chemical composition^a of Reference Switchgrass (mean of analyses completed 11/2014 & 2/2015)

%Structural Ash	%Extractable Inorganics	%Structural Protein	%Extractable Protein	%Water Extracted Glucan ^b	
1.88	2.07	1.51	0.54	2.28	
%Water Extracted Xylan ^b	%Water Extractives Others	%EtOH Extractives	%Lignin	%Glucan	
0.09	6.68	2.68	16.24	33.21	
%Xylan	%Xylan %Galactan		%Acetate	%Total	
21.65	1.43	3.27	3.07	96.60	

^aDetermined using NREL "Summative Mass Closure" LAP (NREL/TP-510-48087)

Proximate, Ultimate & Calorimetry

Table 2. Proximate, ultimate, and calorific values for Reference Switchgrass (reported on a dry basis; completed 6/2014)

Proximate ^a				Ultimate ^b	Calorimetry ^c		
%Volatile	%Ash	%Fixed Carbon	%Hydrogen	%Carbon	%Nitrogen	HHV	LHV
80.2	4.2	15.6	5.7	47.2	0.5	8077	6749

^aProximate analysis was done according to ASTM D 5142-09

^bDetermined by HPLC following an acid hydrolysis of the water extractives

^c%Arabinan value includes %mannan, because arabinose and mannose co-elute on the HPLC column

^bUltimate analysis was conducted using a modified ASTM D5373-10 method (Flour and Plant Tissue Method) that uses a slightly different burn profile

^cHeating values (HHV, LHV) were determined with a calorimeter using ASTM D5865-10

Elemental Ash

Table 3. Elemental ash composition^a of Reference Switchgrass (completed 6/2014)

%Al as Al ₂ O ₃	%Ca as CaO	%Fe as Fe ₂ O ₃	%K as K ₂ O		%Mn as MnO			%Si as SiO₂	%Ti as TiO₂	%S as SO₃
0.25	7.37	1.63	17.55	9.79	0.19	1.61	4.45	53.53	0.01	2.73

^aDetermined as described in ASTM standards D3174, D3682 and D6349

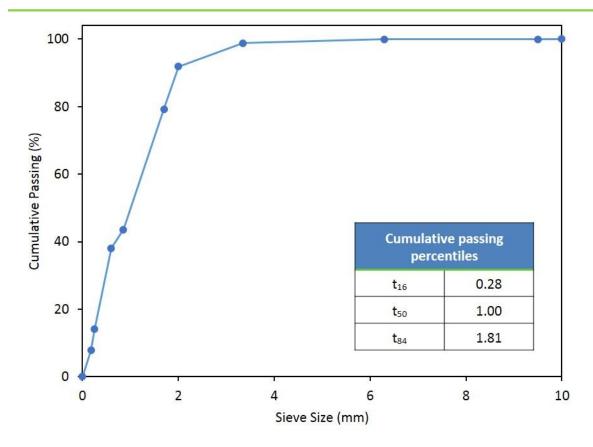

Lignin Chemistry

Table 4. Lignin chemistry of Reference Switchgrass (completed 12/2015)

Monolignol Composition ^a			Linkage A	Cinnamate Content ^a				
p-Hydroxyphenyl (H) content (% of total H+G+S)	Guaiacyl (G) content (% of total H+G+S)	Syringyl (S) content (% of total H+G+S)	$ exttt{R-aryl}$ ether ($ exttt{R-O-4}$) (fraction of total) $^{ exttt{c}}$	Phenylcoumaran (ß-5/a-O-4) (fraction of total)	Resinol (ß-ß) (fraction of total)	Dibenzodioxocin (5-5/4-0-ß) (fraction of total)	Ferulate content (% of total cinnamates)	p-Coumarate (% of total cinnamates)
3	70	27	94	5	1	0	27	73

^aDetermined by integration of peak volumes of ball-milled whole cell wall samples, swelled in 4:1 DMSO:Py, and analyzed by gel-state HSQC NMR (Mansfield, S. D., et al. (2012) Nature Protocols, 7(9), 1579-1589)
^bQuantitative data on the different types of chemical linkages between monolignols in a biomass sample. Determined by integrating peak volumes in solution-state HSQC NMR spectra of acetylated whole cell wall samples
^cEther bond between the ß carbon on one monolignol to the phenolic oxygen on a second monolignol. This is typically the most common linkage found in native lignin samples (Vanholme, R., et al. (2010) Plant Physiol., 153, 895-905)

Particle Characteristics

Figure 1. Cumulative passing percent of 1-inch Reference Switchgrass determined according to ANSI/ASAE S319.4 using a Ro-Tap test sieve shaker (Model RX-29, W.S. Tyler) and a 15 minute total sieving time (completed 4/2015). The cumulative passing percentile sieve sizes (e.g., t_{16}) were calculated by interpolation and represent theoretical sieve sizes that would retain 16, 50 or 84% of the particles by mass.

Contact

For questions regarding biomass material or analytical data please contact Amber Hoover at amber.hoover@inl.gov or 208-526-5992.

Visit the Bioenergy Feedstock Library (https://bioenergylibrary.inl.gov) for more information on biomass feedstocks.

Revised on 11/28/2016.